SRT Status and Plans for Version-7

Joel Susskind, John Blaisdell and Lena Iredell

NASA GSFC Sounder Research Team (SRT)

AIRS Sounder Science Team Meeting Pasadena, CA

March 19, 2014

Accomplishments since May 2013 Meeting

Our major accomplishment has been to bring SRT Version-6 up to date with JPL

Some previously unknown differences were found and corrected

SRT Level-2 and Level-3 Version-6 and Version-6 AO results now match JPL

We have also made improvements to the water vapor profile q(p) retrieval step

Short Range SRT Plans for Version-7

Re-optimize details of all retrieval steps

Most optimization previously done used 2 regression start up state q(p) retrieval had not been modified since Version-4

Version-6 q(p) retrieval degrades Neural-Net guess

We have already made significant improvements in q(p) retrieval methodology in our current SRT Version-6.1

q(p) retrieval now takes tropopause height into consideration Ozone retrieval step should do the same

Version-6.1 q(p) retrieval performs much better than Version-6

We will further revisit q(p) channels, functions, and damping

We will consider a second pass q(p) retrieval step

Not found useful in Version-5 and never tested in Version-6

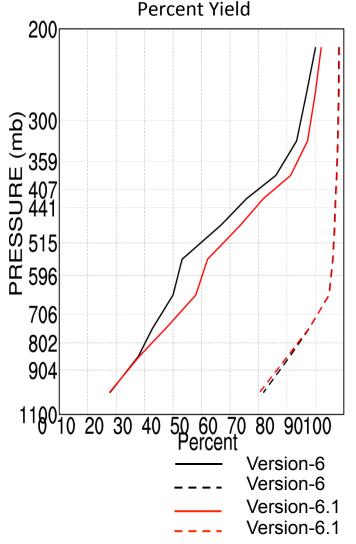
Version-6.1 Changes made to Water Retrieval Step

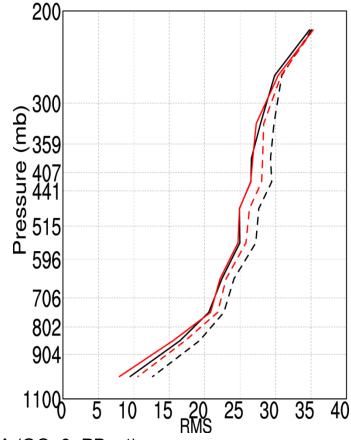
Modified Neural-Net $q^0(p)$ guess above the tropopause

Linearly tapers the neural net guess to match climatology at four fine levels above the tropopause

Changed the 11 trapezoid q(p) perturbation functions used in Version-6 so as to match the 23 functions used in T(p) retrieval step

Increased the damping used in q(p) step because we now have more functions

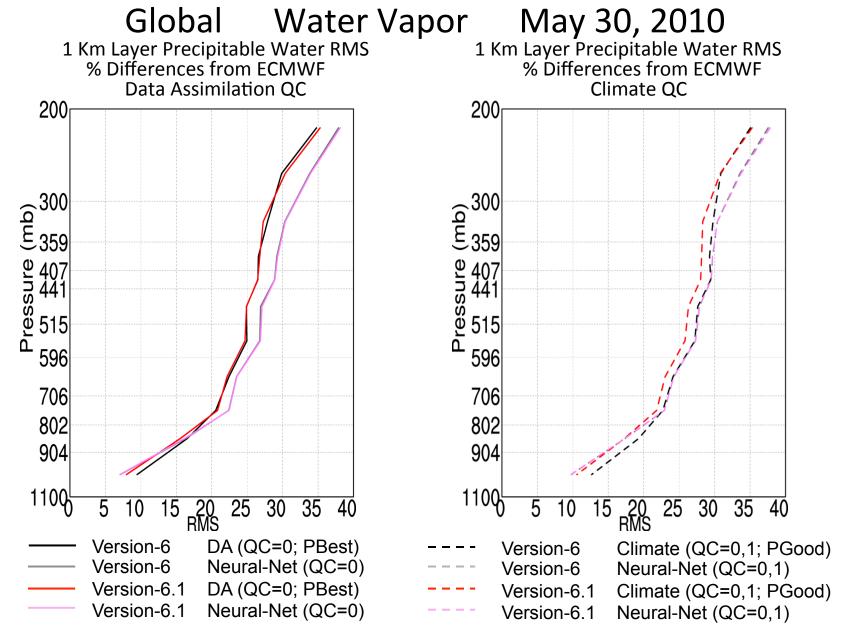

Results tested on May 30, 2010 data



Global Water Vapor

May 30, 2010

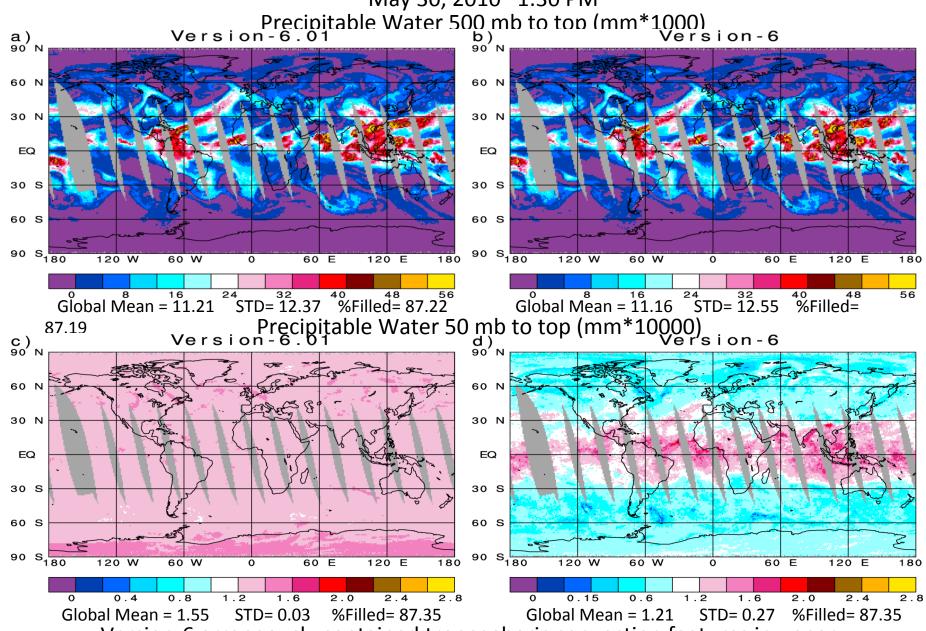
1 Km Layer
Precipitable Water RMS
% Differences from ECMWF


DA (QC=0; PBest) Climate (QC=0,1; PGood)

DA (QC=0; PBest)

Climate (QC=0,1; PGood)

Accuracy with Climate QC has improved considerably over Version-6 Data Assimilation (DA) accuracy has also improved with increased yield



Version-6.1 retrieval no longer degrades Neural-Net guess beneath 800 mb and improves Neural-Net guess above 800 mb with Climate QC

May 30, 2010 1:30 PM

Version-6 erroneously contained tropospheric convection features in upper stratospheric water vapor field. This has been corrected in Version-6.1.

More Short Range SRT Plans for Version-7

• Improve temperature profile retrieval by using tropospheric 15 μm CO₂ channels that do not see clouds.

Theory says that 15 μm CO₂ channels that see clouds should not be used in T(p) retrieval. Version-6 assures this by using only stratospheric sounding CO₂ channels in T(p) retrieval

Many tropospheric 15 μm do not see clouds depending on the scene and can (should) be used in T(p) retrieval for that case

- Evaluate the use of the difference in brightness temperature between 2 channels on and off weak CO₂ and H₂O lines as single pieces of information
- Improve $O_3(p)$ retrieval step
- Further refine error estimate and QC methodology
- Further stabilize cloud parameter retrievals
 - Some retrievals still do not converge

SRT Mid-Range Plans for Version-7: Higher Resolution (HR) Retrievals

Implement 1 (cross track) x 3 (along track) FOV retrieval system

This triples the spatial resolution and density of the AIRS soundings

Cloud clearing allows for up to two cloud formations in a 1x3 FOR

	<u>Nadir FOR</u>	Largest Zenith Angle FOR
Version-6	40.6 km x 40.6 km	115.0 km x 63.3 km
HR	13.5 km x 40.6 km	38.3 km x 65.3 km

Cloud clearing should improve, especially over land, because spatial variability of T_{skin} , ε_{v} , q(p) is less in a smaller FOR

Retrievals should also improve, especially over land, because quantities to be retrieved vary less within a FOR

Boundary layer temperature and boundary layer water vapor should improve as well

SRT will investigate generation of 0.5 degree x 0.5 degree level-3 products using HR system

SRT Mid-Range SRT Plans for Version-7: Longwave Cloud Spectral Emissivity

Version-6 uses 57 channels to retrieve cloud parameters for each of two cloud layers k=1,2 for each AIRS Field of View (FOV)

 $\alpha \varepsilon_1$, pc_1 , $\alpha \varepsilon_2$, pc_2

where $\alpha \varepsilon_k$ is the product of a spectrally independent cloud emissivity and the geometric fractional cloud cover for a cloud at pressure pc_k as seen from above

We plan to determine a cloud spectral emissivity ratio $\alpha \varepsilon_{\nu}/\alpha \varepsilon^{0}$ for the upper level cloud in a form analogous to longwave surface spectral emissivity retrieval which uses 77 channels

This can be done one of two ways:

- Sequentially after current cloud retrieval step, using the current
 77 surface longwave emissivity channels or
- Concurrently with cloud retrieval using 57 channels + 77 channels (134) channels

Cloud spectral emissivity will be used in spectral OLR calculation

Longer Term Plans

- Include CO₂ retrieval as part of retrieval process
 CO₂ retrieval is currently a post processing step
 Does not interact with anything else
 We plan to work with Ed Olsen to examine feasibility of:
 - doing CO_2 retrieval after pass 1 and using retrieved CO_2 in recomputation of T(p), OLR, everything else
 - and possibly attempting coupled CO₂, T(p) retrieval
 Mous said this cannot be done I am not so sure
- 2) Incorporating dust retrieval as part of retrieval process
 - Including dust score as part of error estimate procedure
 This could help flag poor dusty retrievals
 - Including dust into the RTA used in second pass
 This could potentially improve retrievals in dusty cases

